Low-complexity Method for Hybrid Mpc with Local Guarantees∗
نویسندگان
چکیده
Model predictive control problems for constrained hybrid systems are usually cast as mixed-integer optimization problems (MIP). However, commercial MIP solvers are designed to run on desktop computing platforms and are not suited for embedded applications which are typically restricted by limited computational power and memory. To alleviate these restrictions, we develop a novel low-complexity, iterative method for a class of non-convex, non-smooth optimization problems. This class of problems encompasses hybrid model predictive control problems where the dynamics are piece-wise affine (PWA). We give conditions such that the proposed algorithm has fixed points and show that, under practical assumptions, our method is guaranteed to converge locally to local minima. This is in contrast to other low-complexity methods in the literature, such as the non-convex alternating directions method of multipliers (ADMM), for which no such guarantees are known for this class of problems. By interpreting the PWA dynamics as a union of polyhedra we can exploit the problem structure and develop an algorithm based on operator splitting procedures. Our algorithm departs from the traditional MIP formulation, and leads to a simple, embeddable method that only requires matrix-vector multiplications and small-scale projections onto polyhedra. We illustrate the efficacy of the method on two numerical examples, achieving good closed-loop performance with computational times several orders of magnitude smaller compared to state-of-the-art MIP solvers. Moreover, it is competitive with ADMM in terms of suboptimality and computation time, but additionally provides local optimality and local convergence guarantees.
منابع مشابه
Low-complexity iterative method for hybrid MPC
Model predicitve control problems for constrained hybrid systems are usually cast as mixed-integer optimization problems (MIP). However, commercial MIP solvers are designed to run on desktop computing platforms and are not suited for embedded applications which are typically restricted by limited computational power and memory. To alleviate these restrictions, we develop a novel low-complexity,...
متن کاملDesigning a novel structure of explicit model predictive control with application in a buck converter system
This paper proposes a novel structure of model predictive control algorithm for piecewise affine systems as a particular class of hybrid systems. Due to the time consuming and computational complexity of online optimization problem in MPC algorithm, the explicit form of MPC which is called Explicit MPC (EMPC) is applied in order to control of buck converter. Since the EMPC solves the optimizati...
متن کاملHybrid predictive control of nonlinear systems: method and applications to chemical processes
A hybrid control structure that unites bounded control with model predictive control (MPC) is proposed for the constrained stabilization of nonlinear systems. The structure consists of: (1) a finite-horizon model predictive controller, which can be linear or nonlinear, and with or without stability constraints, (2) a family of bounded nonlinear controllers for which the regions of constrained c...
متن کاملHybrid Particle-Continuum Simulations of Low Knudsen Number Hypersonic Flows
A modular particle-continuum (MPC) numerical method is used to simulate steady-state hypersonic flows which exhibit local regions of non-equilibrium embedded within mainly continuum flow fields. The MPC method loosely couples direct simulation Monte Carlo (DSMC) and Navier-Stokes (NS) methods which operate in different regions, use different mesh densities, and are updated using different sized...
متن کاملCommunity Detection using a New Node Scoring and Synchronous Label Updating of Boundary Nodes in Social Networks
Community structure is vital to discover the important structures and potential property of complex networks. In recent years, the increasing quality of local community detection approaches has become a hot spot in the study of complex network due to the advantages of linear time complexity and applicable for large-scale networks. However, there are many shortcomings in these methods such as in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017